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LETTER TO THE EDITOR

Relativistic Calogero–Sutherland model: spin
generalization, quantum affine symmetry and dynamical
correlation functions

Hitoshi Konno†
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01, Japan

Received 19 February 1996

Abstract. Spin generalization of the relativistic Calogero–Sutherland model is constructed by
using the affine Hecke algebra and shown to possess the quantum affine symmetryUq(ĝl2).
The spinless model is exactly diagonalized by means of the Macdonald symmetric polynomials.
The dynamical density–density correlation function, as well as the one-particle Green function,
are evaluated exactly. We also investigate the finite-size scaling of the model and show that
the low-energy behaviour is described by theC = 1 Gaussian theory with a new selection rule.
The results indicate that the excitations obey the fractional exclusion statistics and also exhibit
the Tomonaga–Luttinger liquid behaviour.

Recently, Yangian symmetry has been extensively studied [1–3] in relation to the Calogero–
Sutherland model (CSM) [4], the Haldane–Shastry model (HSM) [5] as well as conformal
field theory (CFT). In particular, it is remarkable that a new structure of CFT called spinon
structure has been understood based on this symmetry [3]. This motivated the authors in
[6] to analyse the analogous structure of the level-1 integrable highest weight modules of
the quantum affine algebraUq(ŝl2). These modules and their duals are known to provide
a space of states of theXXZ spin chain in the antiferromagnetic regime [7]. The level-
0 action ofUq(ŝl2) in the level-1 modules has been shown to play the same role as the
Yangian in CFT. Namely the level-1 modules are completely reducible with respect to the
level-0 action. However, no physical models related to this level-0 symmetry have been
discussed.

One purpose of this letter is to propose a model having this symmetry. We consider the
trigonometric limit of the Ruijsenaars–Schneider model (RSM) [8], which may be considered
as a relativistic extension of the CSM, and show that the spin generalization of the model
possesses a desired symmetry. This consideration should deepen our understanding of finite-
dimensional quantum integrable systems from the quantum group point of view. In addition,
recently the RSM itself has been shown to have wide connections with various subjects,
such as the sine–Gordon theory [8, 9], theG/G gauged Wess–Zumino–Witten model on a
cylinder with a certain Wilson line insertion [10], 2D Toda chains [8, 11] and the integrable
structure of the four-dimensional supersymmetric Yang–Mills theory [12]. In the second
half of this paper, we investigate physical properties of the trigonometric RSM.

† Yukawa Fellow.
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Let us start with the definition of the trigonometric RSM. Letθj (j = 1, 2, . . . , N) be the
rapidity variables andxj be their canonically conjugate variables. We impose the canonical
commutation relations [xj , θl ] = iδj,l with h̄ = 1 and use the representationθl = −i∂/∂xl .
The model is described by the following HamiltonianH and momentum operatorP

H = c2

2
(H−1 + H1) P = c

2
(H−1 − H1) (1)

with N independent integrals of motionHk (or H−k) (k = 1, 2, . . . , N)

H±k =
∑

I⊂{1,2,...,N}
|I |=k

∏
i∈I

j 6=∈I

(
sin 1

2α(xi − xj ∓ ig/c)

sin 1
2α(xi − xj )

)1/2

e−1/c
∑

i∈I θi

×
∏
l∈I

m6=∈I

(
sin 1

2α(xm − xl ∓ ig/c)

sin 1
2α(xm − xl)

)1/2

(2)

wherec is the speed of light,g ∈ Q is the coupling constant andα ∈ R>0. We normalize the
mass equal to one. The model possesses the Lorentz boost generatorB = −(1/c)

∑N
i=1 xi ,

and is Poincaŕe invariant in the sense that the operatorsH , P and B satisfy the Poincaré
algebra

[H, P ] = 0 [H, B] = iP [P, B] = iH/c2. (3)

In the non-relativistic limitc → ∞, we recover the Hamiltonian of the CSM

lim(H − Nc2) = −
N∑

j=1

1

2

(
∂

∂xj

)2

+ g(g − 1)

4

∑
16j<k6N

α2

sin2 1
2α(xj − xk)

with identification α = 2π/L, where L is the length of a ring on which particles are
confined.

It is also known that the integrals of motionsHk can be gauge transformed to the
Macdonald operators [13]. Let us define new parametersp = e−α/c, t = pg and new
variableszj = eiαxj , p±ϑj = e∓(α/c)zj ∂/∂zj . Notice the relationp±ϑj zj = p±1zj . Then, by
using the function

1 =
N∏

j,k=1
j 6==k

(zj /zk; p)∞
(tzj /zk; p)∞

(4)

with (x; p)∞ = ∏∞
n=0(1 − xpn), one has [14]

1−1/2H±k1
1/2 = t∓k(N−1)/2Dk(p

±1, t±1). (5)

HereDk(p, t) are the Macdonald operators defined by [13]

Dk(p, t) = tk(k−1)/2
∑

I⊂{1,2,...,N}
|I |=k

∏
i∈I

j 6=∈I

tzi − zj

zi − zj

∏
i∈I

p%i . (6)

Now let us discuss a spin generalization of the model and clarify its quantum affine
symmetry. The model we will consider is essentially the trigonometric model discussed by
Bernardet al [2], but it has never been connected to the relativistic CSM. Let us consider
the trigonometric solutionR̄(z) [7] of the Yang–Baxter equation and the operatorL0i (z)

(i = 1, 2, . . . , N) defined by

L0i (z) = 1 − q2z

(1 − z)q
R̄0i (z) = zS−1

0i − S0i

1 − z
P0i (7)
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whereq (6= 0) is a complex parameter,Pij (vi ⊗ vj ) = vj ⊗ vi with vj = v+ or v− is a basis
of two-dimensional vector spacesVj (j = 0, 1, . . . , N) and

S =


−q−1

q − q−1 −1
−1 0

−q−1

 . (8)

We regardL0i (z) as a linear operator onV0 ⊗ Vi . Note that the operatorsSjj+1(j =
1, 2, . . . , N − 1) satisfy the Hecke algebra relations.

Sjj+1 − S−1
jj+1 = q − q−1

Sjj+1Skk+1 = Skk+1Sjj+1 |j − k| > 1 (9)

Sjj+1Sj+1j+2Sjj+1 = Sj+1j+2Sjj+1Sj+1j+2.

Define the monodromy matrixL0(z) by

L0(z) = L01(z)L02(z) . . . L0N(z). (10)

Then the operators̄R(z) andL0(z) satisfy the relation

R̄00′(z/z′)L0(z)L0′(z′) = L0′(z′)L0(z)R̄00′(z/z′). (11)

We use this relation to realize the quantum affine symmetryUq(ĝl2) as well as to define
an integrable spin generalization of the model. For this purpose, we introduce the
notion of affine Hecke algebrâHN(q) [2]. The algebraĤN(q) is generated bygjj+1

(j = 1, 2, . . . , N − 1) andyj (j = 1, 2, . . . , N) with relations (9) forgjj+1 and

yjyk = ykyj gjj+1yjgjj+1 = yj+1

[gjj+1, yk] = 0 (j, j + 1 6= k). (12)

We use the following representation of̂HN(q) [6]:

g±1
jk = qzj − q−1zk

zj − zk

(1 − Kjk) − q∓1

yj = r−1
jj+1 . . . r−1

jN pϑj r1j . . . rj−1j

with Kjkf (. . . , zj , . . . , zk, . . .) = f (. . . , zk, . . . , zj , . . .) andrjk = Kjkgjk.
Since the operatorsyj (j = 1, . . . , N) commute with each other, the ‘quantized’

monodromy matrix [2]

L̂0(z) = L01(zy1) . . . L0N(zyN) (13)

also satisfies relation (11). Consider the formal expansion ofL̂0(z) in z±1 and define

L̂±
0 (z) =

∑
±n>0

zn

(
l±11[n] l±12[n]
l±21[n] l±22[n]

)
. (14)

From (7) and (11), we have the relationsl+21[0] = l−12[0] = 0 andl+jj [0]l−jj [0] = 1 (j = 1, 2)

as well as

R̄00′(z/z′)L̂±
0 (z)L̂±

0′(z
′) = L̂±

0′(z
′)L̂±

0 (z)R̄00′(z/z′) (15)

R̄00′(z/z′)L̂+
0 (z)L̂−

0′(z
′) = L̂−

0′(z
′)L̂+

0 (z)R̄00′(z/z′). (16)

Now let FN be the space of vectorsv ∈ {f (z1, z2, . . . , zN) ⊗ V ⊗N } satisfying

(gjj+1 − Sjj+1)v = 0 j = 1, 2, . . . , N − 1. (17)
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Relations (15) and (16) define a level-0 representationπ(N) of Uq(ĝl2) on FN [6]. From
(13) and (14), we obtain its explicit form as

π(N)(e0) =
N∑

j=1

y−1
j qh1 ⊗ · · · ⊗ qh1⊗

j

f̌1 ⊗qh2 ⊗ · · · ⊗ qh2

π(N)(f0) =
N∑

j=1

yjq
−h2 ⊗ · · · ⊗ q−h2⊗

j

ě1 ⊗q−h1 ⊗ · · · ⊗ q−h1

π(N)(e1) =
N∑

j=1

qh2 ⊗ · · · ⊗ qh2⊗
j

ě1 ⊗qh1 ⊗ · · · ⊗ qh1

π(N)(f1) =
N∑

j=1

q−h1 ⊗ · · · ⊗ q−h1⊗
j

f̌1 ⊗q−h2 ⊗ · · · ⊗ q−h2

π(N)(q±hj ) = q±hj ⊗ · · · ⊗ q±hj j = 1, 2

where on the right-hand sidee1 = (0 1
0 0

)
, f1 = (0 0

1 0

)
, h1 = (1 0

0 0

)
andh2 = (0 0

0 1

)
.

Note that the quantum determinantq-detL̂0(z) commutes with the level-0 actionUq(ĝl2)

and is an appropriate object to construct a desired model. Direct calculation shows

q-detL̂0(z) = qN

N∏
j=1

(1 − q−1yjz
−1)

(1 − qyjz−1)
. (18)

Expandingq-detL̂0(z) in the power ofz−1, one gets the commuting family ofN -independent
operators ∑

i1<···<ik

yi1 . . . yik (k = 1, 2, . . . , N). (19)

Now we define a model onFN by the following Hamiltonian̂h and momentum operator
p̂:

ĥ = c2

2

N∑
j=1

(y−1
j + yj ) p̂ = c

2

N∑
j=1

(y−1
j − yj ). (20)

Defining also the operator̂b = −(i/α)
∑N

j=1 ln zj , one can easily show that̂h, p̂ and b̂

satisfy the Poincaré algebra (3). Furthermore, in the spinless sector ofFN , for example
{fsym(z1, . . . , zN)⊗ v+ ⊗ · · ·⊗ v+} with fsym being symmetric functions,̂h, p̂ as well as all
the integrals of motion (19) of the model coincide with those of the relativistic Calogero–
Sutherland model (1) and (2). This is due to the following formula [6] valid on this sector,

Dk(p
±1, t±1) = (−t1/2)±k(N−1)

∑
i1<···<ik

y±1
i1

. . . y±1
ik

where we made identificationt = q2. From (5), this impliesH = 11/2ĥ1−1/2 and
P = 11/2p̂1−1/2. We hence have obtained the integrable spin generalization of the
relativistic Calogero–Sutherland model and shown that it possesses the quantum affine
symmetryUq(ĝl2)0.

We next consider the diagonalization of the spinless model and evaluate the dynamical
correlation functions. The diagonalization of the integrals of motion (2) can be carried out by
the Macdonald symmetric polynomials. Letλ = (λ1, . . . , λN), λ1 > · · · > λN > 0, λj ∈ Z
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be a partition and denote the Macdonald symmetric polynomial byPλ(z; p, t). Then one
has [13]

Dk(p
±1, t±1)Pλ(z; p, t) =

( ∑
i1<···<ik

k∏
l=1

tN−il pλl

)
Pλ(z; p, t).

Therefore, from (5), we obtain the exact eigenvalues ofH andP as

EN(λ) = c2
N∑

j=1

cosh
θj

c
PN(λ) = c

N∑
j=1

sinh
θj

c
(21)

θj = 2π

L

{
λj + g

(
N + 1

2
− j

)}
(22)

where we setα = 2π/L. The corresponding eigenfunctions are given by

9λ(z) = 11/2Pλ(z; p, t). (23)

The model thus can be regarded as an ideal gas ofN relativistic pseudo-particles with
the pseudo-rapidities (22). One should note that formula (22) obeys the following Bethe
ansatz-like equations

Lθj = 2πIj + π(g − 1)

N∑
l=1

sgn(θj − θl) (24)

with Ij = λj + (N + 1)/2 − j .
The ground state is given by the function9φ(z) = 11/2 corresponding to the empty

partition λ = φ. The ground-state momentum and energy eigenvalues are evaluated as
P

(0)
N = 0 and

E
(0)
N = c2 cosh

πgN

cL

/
sinh

πg

cL
. (25)

Hence the ground state can be described as a filled Fermi sea with pseudo-momenta
P

(0)
j = c sinh(θj /c) with −θF 6 θj 6 θF (j = 1, 2, . . . , N), whereθF = πg(N − 1)/L.

The dynamical density–density correlation functions as well as the one-particle Green
function can be evaluated by making use of the Macdonald symmetric polynomials. Here we
summarize the results. To each partitionλ, we assign a Young diagramD(λ) = {(i, j)|1 6
i 6 l(λ), 1 6 j 6 λi , i, j ∈ Z>0}. Let λ′ be the conjugate partition ofλ. For each cell
γ = (i, j) of D(λ), we define the quantitiesa(γ ) = λi − j , a′(γ ) = j − 1, l(γ ) = λ′

j − i

and l′(γ ) = i − 1. Then we have

〈0|ρ(ξ, t)ρ(0, 0)|0〉 = 2

L2

∑
λ

(1 − p|λ|)2(χλ(p, t))2

hλ(p, t)hλ′(t, p)
N (λ) cos(P(λ)ξ) e−iE(λ)t (26)

〈0|9†(ξ, t)9(0, 0)|0〉 = AN

AN+1

∑
λ

t2|λ|((t−1)
(p,t)

λ )2

hλ(p, t)hλ′(t, p)
N (λ) e−i(E(λ)t−P(λ)ξ) (27)

with ξ being a real coordinate conjugate to the momentumP , |λ| = ∑
λj , E(λ) =

EN(λ) − E
(0)
N , P(λ) = PN(λ) and

AN =
N∏

j=1

(ptj−1; p)∞(t; p)∞
(tj ; p)∞(p; p)∞

hλ(p, t) =
∏
γ∈λ

(1 − pa(γ )t l(γ )+1) hλ′(t, p) =
∏
γ∈λ

(1 − pa(γ )+1t l(γ ))
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N (λ) =
∏
γ∈λ

1 − pa′(γ )tN−l′(γ )

1 − pa′(γ )+1tN−l′(γ )−1

χλ(p, t) =
∏
γ∈λ

γ 6==(1,1)

(t l
′(γ ) − pa′(γ )) (a)

(p,t)

λ =
∏
γ∈λ

(t l
′(γ ) − pa′(γ )a).

For the rational couplingg = r/s, one should remark that the factorχλ(p, t)

(respectively(t−1)
(p,t)

λ ) vanishes if the diagramD(λ) contains the lattice point(s +1, r +1)

(respectively(s, r + 1)). According to the same argument put forward by Ha in the CSM
[15], this indicates that only the states which contain minimalr quasi-hole excitations
accompanied bys (respectively (s − 1)) quasi-particles can contribute as the intermediate
states in (26) (respectively (27)). One can thus conclude that the excitations of the model
obey the fractional exclusion statistics following Haldane [16] as in the CSM [15].

Furthermore, the exact spectra (21) allow one to analyse the finite-size scaling of the
model in the thermodynamic limit,N , L → ∞ with N/L = n fixed. First of all, from (25)
we obtain the finite-size correction to the ground-state energy as

lim E0
N = Lε0 − πv

6L
g + O

(
1

L2

)
(28)

where ε0 = (c3/πg) cosh(πgn/c) and v = c sinh(πgn/c) are the ground-state energy
density and the velocity of the elementary excitation, respectively. In comparison with
general theory [17], one may suspect that the central charge is given byg. However, this
is not the correct identification [18]. The central charge should be identified with one.
This can be justified by calculating the low-temperature expansion of the free energy from
(24). Instead, we justify it here by deriving the whole conformal dimensions associated
with the elementary excitations. These can be obtained by evaluating the differences of the
total energy and momentum from the ground-state eigenvalues under change of the particle
number (by1N ) and transfer of the1D-particles from the left to the right Fermi point
[18]. We hence obtain the finite-size corrections

1E = µ1N + 2πv

L

[
g

4
1N2 + 1

g

(
1D + 8

2π

)2
]

1P = 2pF1D + 2π cosh(πgn/c)

L
1N

(
1D + 8

2π

)
where µ = c2 cosh(πgn/c) and pF = v/g are the chemical potential and the Fermi
momentum, respectively. We modified here the argument by Kawakami and Yang by
considering the flux excitations8 associated with the change of the particle number1N

[19, 15]. Adding the contribution from the quasi-particle and quasi-hole excitations, we
finally obtain the right and left conformal dimensionsh± as follows,

h±(1N; 1D; N±) = 1

2

[√
g1N

2
± 1√

g

(
1D + 8

2π

)]2

+ N± (29)

whereN± ∈ Z>0. Remarkably, the result does not depend onc. The flux carried by a
particle isπg as in the CSM [19] so that8 = πg1N . One can thus write (29) as

h+ = 1

2g
(1D + g1N)2 + N+ h− = 1

2g
1D2 + N−.

This result indicates that the effect of the flux excitation is equivalent to imposing the
new selection rule1D = (g/2)1N (mod 1) on (29) without8/2π . This selection rule
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in fact can be obtained from the periodicity of the wavefunction of the pseudo-particle
exp(iθjxj ) under the changexj → xj + L. Henceh± with N± = 0 can be regarded as
the conformal dimensions of theU(1)-primary fields in theC = 1 Gaussian theory. From
the results (26) and (27), we have also succeeded in obtaining the thermodynamic limit
of the dynamical correlation functions and their low-energy asymptotic forms [20]. The
critical exponents thus obtained agree with Ha’s results [15] as well as those obtained from
h± with assignment1N = 0 for the density correlation and1N = 1 for the one-particle
Green function. We thus conclude that the model possesses the Tomonaga–Luttinger liquid
property [21].

In the case with the special couplingg = 2, Gaussian theory is known to become the
level-1 su(2) Wess–Zumino–Witten theory. This feature is consistent with the results in
[6], where settingt = p2 is inevitable to define a new level-0 action ofUq(ŝl2).

In comparison with the CSM, our model possesses one extra parameterc. The ultra-
relativistic limit c → 0 is especially interesting. There one has a decoupling of the left-
and right-movers. In addition, the limitg → 0 with g/c fixed reduces the Macdonald
polynomial to the Hall–Littlewood function [13]. This suggests that a certain mathematical
structure remains in this limit [22].

The author would like to thank O Babelon, D Bernard, P J Forrester, T Fukui, M Jimbo,
N Kawakami, V B Kuznetsov, T Miwa, K Ueno and T Yamamoto for valuable discussions.
He would also like to thank Simon Ruijsenaars for communications. This work is supported
by the Yukawa memorial foundation.

After finishing this work, we found a paper by V Pasquier [23] where the same subject
as in the first part of this paper is discussed.
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